CAVAREV--an open platform for evaluating 3D and 4D cardiac vasculature reconstruction.
نویسندگان
چکیده
The 3D reconstruction of cardiac vasculature, e.g. the coronary arteries, using C-arm CT (rotational angiography) is an active and challenging field of research. There are numerous publications on different reconstruction techniques. However, there is still a lack of comparability of achieved results for several reasons: foremost, datasets used in publications are not open to public and thus experiments are not reproducible by other researchers. Further, the results highly depend on the vasculature motion, i.e. cardiac and breathing motion patterns which are also not comparable across publications. We aim to close this gap by providing an open platform, called CAVAREV (CArdiac VAsculature Reconstruction EValuation). It features two simulated dynamic projection datasets based on the 4D XCAT phantom with contrasted coronary arteries which was derived from patient data. In the first dataset, the vasculature undergoes a continuous periodic motion. The second dataset contains aperiodic heart motion by including additional breathing motion. The geometry calibration and acquisition protocol were obtained from a real-world C-arm system. For qualitative evaluation of the reconstruction results, the correlation of the morphology is used. Two segmentation-based quality measures are introduced which allow us to assess the 3D and 4D reconstruction quality. They are based on the spatial overlap of the vasculature reconstruction with the ground truth. The measures enable a comprehensive analysis and comparison of reconstruction results independent from the utilized reconstruction algorithm. An online platform (www.cavarev.com) is provided where the datasets can be downloaded, researchers can manage and publish algorithm results and download a reference C++ and Matlab implementation.
منابع مشابه
Residual motion compensation in ECG-gated interventional cardiac vasculature reconstruction.
Three-dimensional reconstruction of cardiac vasculature from angiographic C-arm CT (rotational angiography) data is a major challenge. Motion artefacts corrupt image quality, reducing usability for diagnosis and guidance. Many state-of-the-art approaches depend on retrospective ECG-gating of projection data for image reconstruction. A trade-off has to be made regarding the size of the ECG-gatin...
متن کاملOpening Windows – Increasing Window Size in Motion-Compensated ECG-gated Cardiac Vasculature Reconstruction
In interventional angiographic C-arm CT imaging (rotational angiography), 3-D reconstruction of coronary vasculature is a topic of ongoing research. Due to the slow gantry rotation speed, motion artefacts corrupt image quality. Many approaches use retrospective ECG-gating to limit data inconsistencies during reconstruction. This poses a trade-off between gating window size and artefact level. A...
متن کاملCardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization.
PURPOSE Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be r...
متن کامل3D and 4D Seismic Data Integration in Static and Dynamic Reservoir Modeling: A Review
Reservoir modeling is the process of generating numerical representations of reservoir conditions and properties on the basis of geological, geophysical, and engineering data measured on the Earth’s surface or in depth at a limited number of borehole locations. Therefore, reservoir modeling requires an incorporation of the data from a variety of sources, along with an integration of knowledge a...
متن کاملInterventional 4-D Motion Estimation and Reconstruction of Cardiac Vasculature without Motion Periodicity Assumption
Anatomical and functional information of cardiac vasculature is a key component in the field of interventional cardiology. With the technology of C-arm CT it is possible to reconstruct static intraprocedural 3D images from angiographic projection data. Current approaches attempt to add the temporal dimension (4D). In the assumption of periodic heart motion, ECG-gating techniques can be used. Ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 55 10 شماره
صفحات -
تاریخ انتشار 2010